TTIC 31260 - Algorithmic Game Theory (Winter 2026)

Lecturer: Avrim Blum Lecture 12: February 18, 2026

Mechanism Design I'V: Combinatorial Auctions

1 Overview

In this lecture we consider the problem of maximizing social welfare in combinatorial auctions. We
will consider the setting with n buyers and m items (and we just have one copy of each item).
Buyer ¢ has valuation function v; and we assume each buyer is only interested in what he/she gets
(v; only depends on buyer i’s allocation). We already know that the VCG mechanism maximizes
social welfare, but this can be computationally hard. We will see today that we can approximately
maximize social welfare in the case of buyers with subadditive valuations using a simpler scheme
in which we set prices to each item.

2 Winner Determination and Valuation Functions

First, let us forget about incentives and prices, and only worry about the algorithmic problem of
“winner determination”: given a set of v;’s, solving for an allocation of the items so that the social
welfare is maximized. There are several classes of valuation functions that we can consider:

1. Additive valuation functions: Vi, v;(S) = > _cgvi({z}). We can maximize social welfare
simply by giving each item to the buyer who values it the most.

2. Unit demand valuation functions: Vi, v;(S) = max,esv;({x}). In this case we can reduce
the winner determination problem to a bipartite maximum-weight matching problem: put
the buyers on one side and the items on the other side, and add an edge of weight v;({z})
between buyer i and item x).

3. Single minded valuation functions: Vi, 3S; with some valuation v;(.S;) such that for all sets S,
if S 2 S; then v;(S) = v;(S;) and if S 2 S; then v;(S) = 0. In other words each buyer has a
single set they want. In this case maximizing social welfare becomes the set packing problem.

4. Subadditive valuation functions: Vi, S, T v;(SUT) < v;(S) + v;(T).

5. Submodular valuation functions: Vi, S, T v;(SUT) 4+ v;(SNT) < v;(S) + v;(T).

Another way to look at this is to rewrite it as: v;(SUT) — v;(S) < v(T) —v;(SNT). In
particular, for any three disjoint sets A, B,C (let S = AUB and let T = BUC'), the marginal
value of C given that you already have B is greater than or equal to the marginal value of C
given than you already have AU B.

It turns out that maximizing social welfare is NP-hard in the last three cases.



3 Setting Prices

We now show how we can achieve fairly high social welfare for buyers with subadditive valuation
functions. This material comes from the paper:

Maria-Florina Balcan, Avrim Blum, and Yishay Mansour, “Item Pricing for Revenue
Maximization.” Proc. 9th ACM Conference on Electronic Commerce, pp. 50-59. 2008.

The mechanism will be very simple. We will put the same price on each item, have the buyers enter
in order from 1,...,n and purchase whatever they want in our “dollar store” from among the items
remaining. We could implement this as a direct-revelation mechanism by having buyers submit
their valuations up front, and then running this procedure virtually. The mechanism is incentive
compatible because it is selecting the utility maximizing bundle for you according to the valuation
you provide, and the valuation submitted does not impact the prices or the items available.

Definition 1 A set S; is supported at price p for buyer i if for all W C S;, v;(W) > p|W/|.

Claim 1 Suppose v; is subadditive, buyer i is shown a set T; with each item at price p, and the
buyer buys S; C T; (i.e. S; = argmaxgcr, vi(S) — p|S|). Then S; is supported at price p.

Proof: Suppose for a contradiction that the claim does not hold. Then there exists W C S; such
that v;(W) < p|W/|. Then since v; is subadditive,

0;(Si) < vi(S;\ W) + v (W)
vi(S;) < vi(S; \ W)+ p|W|
v;(S;) — p|Si| < wi(Si \ W) — p|S; \ W1.

Thus S; \ W is preferred to S; and this is a contradiction. H

Suppose T1,...,T), is the social welfare maximizing allocation (buyer i gets set T;), and assume
1 < maxgv(S) < H for some maximum value H. Imagine we pick a random price p among
{H,H/2,H/4,..., ﬁ}, assign price p to all items, and somehow manage to only allow each buyer

i to select from T;. Let L;, be the set buyer ¢ would choose. In the last lecture we showed that

Bl Il =2 (s )

This leads us to the following mechanism and analysis. Pick p at random from {H, H/2, H/4, ..., ﬁ

and set the price of each item to p/2. Have the buyers enter the store in order 1, ..., n and purchase
whatever they want from the items remaining. Let S; be the set that buyer ¢ purchases, and let
Wi = Li,\ (U;;llSj). That is, W; is the set of items still in the store when buyer ¢ arrives from
the set L;, that the buyer would have purchased in the above thought experiment. Since L; is



supported at price p, we have
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(buyer ¢ could have chosen W; but chose S;)
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Summing over all buyers, we get

The last inequality follows from the fact that every item in L;, is either still there when buyer 4
comes in, in which case it is counted in |W;|, or is bought by some buyer j < 7, in which case it
is counted in |Sj|. Moreover, the sets L;, are disjoint, so we are not double-counting any items.
Finally, we can plug in our revenue guarantee from last lecture to get:

D B max social welfare
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4 Walrasian Equilibrium (Market Equilibrium)
WEe’ll now consider item-pricings where different items may have different prices.

Definition 2 Consider some pricing p1,...,pm on items. We define the demand set D; for bidder
i to be argmaxg v;(S) — p(S) where p(S) = 3o p;-

Definition 3 A Walrasian equilibrium is a set of prices p1,...,pm and an allocation Si,...,S,
(set S; allocated to bidder i and all sets are disjoint) such that S; is a demand set for buyer i.
Furthermore, any unallocated item has price zero.

Note that if there are no ties in defining the demand sets (each buyer has a unique prefered set)
then a Walrasian equilibrium means that all the buyers can come in at the same time and buy what
they want, and there will be no contention. Moreover, even if there are ties, we can still assign sets
to buyers so that they each are getting a favorite set at these prices.

Unfortunately, Walrasian equilibria do not always exist. For example, suppose there are two buyers
and one thousand items. The first buyer is single minded and wants everything and values the
“grand bundle” at 1000. The second buyer has unit demand and has value 10 on any one item.
Suppose the total price of the items is less than 1000, then there will be contention (we cannot
give each buyer their demand set), as the first buyer will want everything and the second buyer



will want at least one item. If the total price is greater than 1000, then the first player does not

want anything, and the second player wants at most one thing costing at most 10. Thus there are
unallocated item with nonzero prices.

Theorem 1 If a Walrasian Equilibrium exists, then the allocation mazimizes social welfare.

Proof: Here is a LP-relaxation of the social welfare maximization problem. Let z;g indicate whether
we allocate set .S to buyer 1.

max Z Z xisvi(S),
i S

s.t. Z Zmig <1 V items j (j goes to at most 1 buyer)
S35 i

Z Tis =1 V buyers i (buyer i gets exactly 1 set)
S

Let ST,...,S; be the allocation at Walrasian equilibrium and let {z}¢} be the optimal LP solution.
Then for all set S and buyer 4

vi(SF) — p(SF) > vi(S) — p(S)
081 = p(S7) = 3 wis (ui(S) — p(9)).
S

The second inequality follows from the fact that ) ¢ z}¢ = 1. Summing over all buyers,

(2

> @iS)) = p(SH)) =Y wis (ui(S) — p(S))).
7 S

(social welfare at equilibrium) — Z p; > (optimal social welfare) — Z Dj-
J J
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